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Abstract

From any given Iterated Function System, a small set of balls that cover the fractal
attractor can be simply determined. This gives a priori bounds on the region of space
in which the attractor may be constructed.

Introduction

As Barnsley, Demko and others have shown [1, 2, 6, 4], one effective method for produc-
ing fractal shapes (in any number of dimensions) is with Iterated Function Systems (IFSs),
using the “Chaos Game” algorithm (or some deterministic algorithm). This approach has
been used for producing naturalistic shapes [4], finding fractal interpolants to given data [6,
p. 274] and fractal approximations of given functions [8], and even for visualizing arbitrary
discrete sequences [7]. Indeed, any contractive IFS will give an attractor (usually of fractal
dimension); thus it is possible to generate IFSs at random to explore the graphical possibil-
ities, as is done in some educational software [5]. Similarly, because the attractor depends
continuously on the parameters in the IFS [1], small data sets from any source could be
encoded as IFSs for visualization.

In implementing the IFS method, one important question is the prediction a priori of
the region of space containing the fractal attractor. Without such a prediction, one could
only approximately estimate the spatial extent based on calculating several points of the
attractor, with no guarantee that these points are near the bounds. If as a result the portion
of space represented in the computation of the attractor is too small, the result will not
yield the whole attractor. If the portion of space represented is overly large, then much
computational space is wasted, reducing the effective resolution of the computed attractor.

Another concern is when the space itself has natural limits, for example the space of colors
in Red-Green-Blue-space representable on a video monitor is limited (more or less) to a unit
cube. Hence if an IFS resides in, say, five-dimensional space with two spatial dimensions and
three color dimensions, the question becomes whether the attractor (or its projection onto
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Figure 1: An attractor of an IFS is shown with its envelope of three disks, as computed by
the direct algorithm. (This IFS uses affine maps, with s1 = 5

7
, s2 = 1

3
, s3 = 1

2
, x1 = (0, 0),

x2 = (4, 0), and x3 = (0, 3).

the limited dimensions) will fit in the space. (At least one implementation [5] includes color
in the IFS, though that case uses only a single color dimension, representing hue.)

Here we show how to compute, directly from the IFS, a set of balls whose union contains
the attractor as a subset (see Figure 1). The radii of the balls are minimal in a certain
restricted sense. This gives reliable bounds on the region of space that must be considered
in constructing the fractal. The method is general, independent of the particular space and
metric. We first describe the set of balls, then show how to compute their radii and prove
that the algorithms work, and lastly give a detailed example.

1 IFS Envelopes

An IFS consists of a set of n contraction mappings wi : X → X on a metric space X with
metric d : X × X → R. (For the “Chaos Game” algorithm, probabilities pi are associated
with each mapping; this idea has been extended to conditional probabilities [3]. Here only
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the former case is considered, where the attractor is independent of the non-zero pi.) Assume
that for each contraction wi the contractivity ratio 0 ≤ si < 1 and the fixed point xi are
known, where by definition si satisfies d(wi(x), wi(y)) ≤ sid(x,y) for all points x,y ∈ X and
xi satisfies xi = wi(xi). The action of the IFS W on a set S of points in X is defined as

W (S) ≡
n⋃

i=1

wi(S) (1)

where each contraction wi is applied to the set S in a pointwise sense. The attractor A is
the set of points in X satisfying

A = W (A) . (2)

That is, the attractor consists of n smaller “copies” of itself.
We seek to cover each of the n “copies” with a closed ball Bi centered on the corresponding

fixed point xi, so the radius ri must be chosen large enough that Bi ⊃ wi(A). Call the union
E of these balls the “envelope,” in that E ⊃ A by (2). Then relative to each xi, every point
in the envelope will be within a distance Ri = maxj(dij + rj), where dij ≡ d(xi,xj), because
for any point x in Bj, d(xi,x) ≤ dij + d(xj,x) ≤ dij + rj. Applying wi to such a point x will
give an image point y, where d(xi,y) ≤ sid(xi,x) ≤ siRi. Hence if the radii ri are chosen
to satisfy

ri = si max
j 6=i

(dij + rj) (3)

for i, j = 1 . . . n then Bi will contain the image wi(E) of the envelope and so E will contain
its own image under the IFS:

E ⊃ W (E) . (4)

Iterating the IFS from any starting set (E in particular) yields a sequence of sets that
converges to the attractor. Since (4) implies E ⊃ W k(E) for any positive integer k, the
envelope E, subject to (3), does indeed contain the attractor.

2 Algorithms

But for a given IFS, does one or more sets of radii ri exist that satisfy (3), and if so, how
can they be found? Below we give a very simple, iterative algorithm, as well as a more
efficient direct algorithm. The subsequent proof of the validity of the direct algorithm also
constructively proves the existence of a solution, and the structure of the algorithm suggests
that the solution is unique. (Given that a unique solution exists, the system (3) is equivalent
to a linear programming problem with an objective function f =

∑n
i=1 ri, as pointed out by

a reviewer. However, if one wishes to incorporate envelope calculation into an IFS rendering
program, the algorithms given here are simpler than including a general simplex method
solver.)

2.1 Trivial Case: n = 2

When n = 2 the radii can be determined algebraically. Solving the pair of equations (3)
gives:

r1 =
s1(1 + s2)

1 − s1s2
d12
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r2 =
s2(1 + s1)

1 − s1s2
d12 . (5)

But for n > 2 there is apparently no closed-form general solution, and the ri must be found
algorithmically.

2.2 Simple Iterative Algorithm

A natural approach for n > 2 is to start with the pairwise estimates

rij ≡ si(1 + sj)

1 − sisj
dij (6)

r
(1)
i = max

j 6=i
rij (7)

but in most cases the r
(1)
i will not satisfy (3). The exceptional case is when rij = rik for

every i, j 6= i, k 6= i, i.e., when for each ball all the pairwise estimates for that ball give the
same size. (This case is not always apparent from the attractor; Figure 1 shows such an

example.) Otherwise, some of the r
(1)
i will be too small to contain some images wi(B

(1)
j ) of

the other balls. Then the obvious iterative scheme to try is

r
(k+1)
i = max

j 6=i
si(dij + r

(k)
j ) , i, j = 1 . . . n . (8)

Because this approach never overestimates the radii and the iterates are nondecreasing (r
(k)
i ≤

r
(k+1)
i ≤ ri), the algorithm must converge. What is not so obvious is that this process always

suceeds in at most n − 1 iterations, including (7), as shown below. Indeed, there is a direct
algorithm (not iterative) that is more efficient when n is large.

2.3 Direct Algorithm

The key idea behind the direct algorithm is that the distances dij can be rescaled to account
for the contractivities si, and the scaled distances Dij can be used to order the contractions
wi. Let

Dij ≡
(1 + si)(1 + sj)

1 − sisj
dij , i, j = 1 . . . n . (9)

(While Dij is clearly symmetric and non-negative, it is not a metric because it doesn’t satisfy
the triangle inequality.) Now reorder (and relabel) the wi by decreasing maximum scaled
distance, so that

i < j ⇒ max
k

Dik ≥ max
l

Djl , i, j, k, l = 1 . . . n . (10)

In the new order, use the pairwise formula (5) for the first two radii. Then proceed in order
based on the previous results, letting

ri = si max
j<i

(dij + rj) , i = 3 . . . n . (11)

This is the direct algorithm, which, as shown below, solves (3); an implementation in the C
programming language is given in the Appendix.
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2.4 Proof of Validity

First note that in the exceptional case mentioned above (after 7), all the Dij (for i 6= j) are
equal. In this case, the direct algorithm will obtain the correct ri regardless of the order in
which they are computed. If not all the Dij are equal, then some of the ri will need to be

larger than the pairwise estimates r
(1)
i , and hence larger than the rij in (6), so in general (3)

implies

ri ≥
si

1 + si

Dij (12)

for i, j = 1 . . . n.
For the general case, the proof is by induction, showing that each new ri computed

requires no adjustment of those previously computed. Clearly r1, r2 from (5) satisfy (3) for
the subset i, j = 1, 2. Now for the induction step, assume the first m − 1 radii, in the order
(10), satisfy (3), and hence (12), for i, j = 1 . . .m − 1. Choose rm by (11), and let k be
the value of the index j in (11) for which the maximum is achieved. Then by (12) and the
ordering (10)

rk ≥ sk

1 + sk
Dkm . (13)

Algebraic manipulation of (13) gives

rk ≥ sk[(1 + sm)dkm + smrk] = sk(dkm + rm) (14)

so the new rm requires no alteration of rk.
Similarly, for i 6= k, i < m

ri ≥ si

1 + si
Dim

>
si(1 + sm)

1 − sm
dim (15)

since si < 1. Combining (15) with

ri ≥ si(dik + rk) (16)

yields

ri > si[(1 + sm)dim + sm(dik + rk)]

≥ si[dim + sm(dkm + rk)] = si(dim + rm) (17)

by the triangle inequality. Hence the new rm requires no adjustment of any of the previous
ri (for i < m), and (3) is satisfied for i, j = 1 . . .m; this completes the proof. Note also that
because of how the direct algorithm works, the iterative algorithm will compute at least two
of the ri (r1, r2 in the order (10)) in the initial step, and will find at least one of the other ri

at each successive step, and so can take at most n − 1 iterations to arrive at the answer.

3 Minimality of the ri

Can radii smaller than these ri be used and still have the Bi cover the attractor? For any
particular IFS, the answer is probably yes (as illustrated in Figure 2). The approach given
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Figure 2: For an equilateral Sierpinski’s Triangle (where wi(x) = 1
2
x + 1

2
xi), the ri = dij by

this method; in this particular case the radii could be half as large.

here uses only a small amount of information about the IFS: the ordering of the wi based on
the maximal scaled distances; the si; and for each i one determining distance dik (where the
maximum in (11) is achieved). Using more information it may be possible to reduce the size
of the Bi. But if one considers the set of all the IFSs for which the direct algorithm yields
the same ri in the same way (i.e., same ordered si and same n − 1 determining distances),
then the ri are minimal for that set of attractors (see Figure 3). In fact, one can construct
one member of that set such that each image wi(A) of the attractor includes a point at a
distance ri from the fixed point xi.

To construct this IFS, let X = R with the Euclidean metric d(x, y) = |x − y|. Let
wi(x) = −six + (1 + si)xi, and let x1 = 0, x2 = d12, say. Then the attractor includes the
extremal points xe1 = x1 − r1, xe2 = x2 + r2, since xe1 = w1(xe2) and xe2 = w2(xe1). Place
each succeding xm at the determining distance dmk from the determining point xk, in the
opposite direction from xek. (Figure 4 illustrates the construction.) Then the attractor will
include xem = xm ± rm = wm(xek). Thus for this one-dimensional attractor A, each image
wi(A) will include a point (xei) a distance ri from xi, so no smaller ri would suffice.
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Figure 3: Same si and xi as the Sierpinski Triangle, but here wi(x) = −1
2
x + 3

2
xi; in this

case the ri found above are minimal.

Figure 4: A one-dimensional attractor constructed from the following ordered data: s1 = 1
3
,

s2 = 1
4
, s3 = 1

7
, d12 = 1, and d13 = 1

2
. The ri are minimal for such attractors.
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Map Scalings Rotations Translations
i pi qi θi φi ei fi

1 0 0.16 0 0 0 0
2 0.85 0.85 -2.5 -2.5 0 1.6
3 0.3 0.34 49 49 0 1.6
4 0.3 0.37 120 -50 0 0.44

Table 1: Parameters for Barnsley’s fern; all angles are given in degrees.

4 Example

For a detailed example of an envelope calculation, consider the now familiar black spleenwort
fern fractal of [4]. The IFS for the fern (in two dimensions) consists of affine contractions,
each of which has the form

wi

(
x
y

)
=

(
ai bi

ci di

)(
x
y

)
+

(
ei

fi

)
, (18)

or more compactly
wi(x) = Mix + bi . (19)

where Mi is the matrix and bi is the offset vector. The various constants are given in [4], but
in terms of scaling and rotating each axis, using p, q, θ, φ, where a = p cos θ, b = −q sin φ,
c = p sin θ, d = q cos φ; Table 1 is adapted from [4, p. 1977].

4.1 Finding the si

The contractivity ratio si for an affine map wi is the largest singular value of the matrix Mi.
In the first three maps here, both axes rotate together, and so si is the larger of pi, qi. In
w4, the differential rotation causes a skewing effect, and the singular values of M4 must be
found. The simplest way for a real 2 × 2 matrix is first to factor out a pure rotation to give
a symmetric matrix (S), then diagonalize it to find its eigenvalues (λ1, λ2) as shown below:

α = arctan

(
c − b

a + d

)
(20)

S ≡
(

g h
h k

)
=

(
cos α sin α
− sin α cos α

)
M (21)

β =
1

2
arctan

(
2h

g − k

)
(22)

(
λ1 0
0 λ2

)
=

(
cos β sin β
− sin β cos β

)
S

(
cos β − sin β
sin β cos β

)
. (23)

Then s = max(|λ1|, |λ2|). This approach also has a nice geometrical interpretation: the effect
of multiplying a vector x by M is to take components of x in the eigenvector directions, which
are at an angle β relative to the coordinate axes, scale each component by the corresponding
λ, and rotate the resulting vector by α.
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Figure 5: Barnsley’s fern [4] and its envelope (see text).

Proceeding as above gives s4 = 0.379. The fixed point xi for each map can be found by
solving

(I − Mi)xi = bi (24)

This gives the necessary starting information, summarized as “Input” in Table 2. (For affine
maps in higher dimensions, the contractivity ratios are found by singular value decomposi-
tion, but for nonlinear maps the ratios and fixed points may be more difficult to find.)

4.2 Result

Running the direct algorithm program (“envelope.c”) from the Appendix on this input
gives the following results:

% envelope

Enter number of contraction mappings: 4

Map 1. Enter scale, x, y: .16 0 0

Map 1: s = 0.160000, x = 0.000000, y = 0.000000
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Input Output
i si xi yi D-order Dmax ddet ri

1 0.16 0 0 4 D12: 25.59 d12: 10.30 4.32
2 0.85 2.460 10.005 1 D24: 36.35 d24: 9.65 16.70
3 0.34 -0.602 1.884 3 D32: 30.26 d32: 8.68 8.63
4 0.379 0.155 0.630 2 D42: 36.35 d42: 9.65 9.99

Table 2: Results of direct algorithm for the fern.

Map 2. Enter scale, x, y: .85 2.45967 10.004734

Map 2: s = 0.850000, x = 2.459670, y = 10.004734

Map 3. Enter scale, x, y: .34 -0.601889 1.883961

Map 3: s = 0.340000, x = -0.601889, y = 1.883961

Map 4. Enter scale, x, y: 0.379216 0.155336 0.630251

Map 4: s = 0.379216, x = 0.155336, y = 0.630251

radii in sorted order[orig order](sorted link):

r1[2](->2): 16.700212

r2[4](->1): 9.993765

r3[3](->1): 8.628835

r4[1](->1): 4.320459

%

These results are illustrated in Figure 5, and detailed in Table 2, including the D values
used in re-ordering and the determining distances. (While in this example the determining
distance for each map derives from the same pair that gives the maximum D, that is not
always the case.) So if we had no idea how big the fern attractor was, we could use a
computational space extending from xmin = x2 − r2 = −14.24 to xmax = x2 + r2 = 19.16 and
ymin = y4 − r4 = −9.36 to ymax = y2 + r2 = 26.70 to contain the entire envelope. As it turns
out, this is far more space than necessary for the fern itself, but there are many other IFSs,
equivalent as far as the direct algorithm is concerned, with much larger attractors (e.g., what
if θ2 = φ2 = 177.5 instead).

5 Conclusions

To summarize, given any IFS (along with the contractivities and fixed points of each of its
constituent contraction mappings), an envelope that covers the attractor can be constructed
of one ball for each map, centered on the corresponding fixed point. (In the case of affine maps
in two dimensions, an explicit procedure for finding the contractivities and fixed points was
given.) The spatial extent of the envelope thus gives a reliable bound on that of the attractor.
(In addition, if the balls are disjoint, the attractor is totally disconnected.) Two algorithms
were given to calculate the radii of the balls: an iterative one for greatest simplicity, and a
direct one for greater efficiency. Both were proven to be effective. While the radii so found
may not be minimal for the particular IFS, they are minimal for the set of all IFSs with
equivalent information (in the sense described above).
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Appendix

/*

The following program in C implements the direct algorithm

for determining the "envelope" of an attractor of an Iterated

Function System on R^2, given the contractivities si and the

fixed points (xi,yi).

written by David Canright, March 1993.

*/

#include <stdio.h>

#include <math.h>

main() {

int npts, i, j, m, n, index[64], link[64];

double d[64][64], x[64], y[64], s[64], r[64], Dmax[64],

t, tmax, dx, dy;
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char line[81];

/* input n, si, xi, yi */

printf("Enter number of contraction mappings: ");

gets(line); sscanf(line,"%d",&npts);

for (i = 1; i <= npts; i++) {

printf("Map %d. Enter scale, x, y: ",i);

gets(line); sscanf(line,"%lf%lf%lf",s+i,x+i,y+i);

/* enforce 0 <= s < 1 */

if(s[i]<0.) s[i] = -s[i]; while(s[i]>=1.) s[i] *= 0.1;

printf("Map %d: s = %f, x = %f, y = %f\n",i,s[i],x[i],y[i]);

}

/* compute distances dij & maximal scaled Dij */

for (i = 1; i <= npts; i++) Dmax[i] = 0.;

for (i = 1; i <= npts; i++) {

for (j = i+1; j <= npts; j++) {

dx = x[i]-x[j]; dy = y[i]-y[j];

d[i][j] = d[j][i] = t = sqrt(dx*dx+dy*dy);

t = (1.+s[i])*(1.+s[j])/(1.-s[i]*s[j]) * t;

if (t > Dmax[i]) Dmax[i] = t;

if (t > Dmax[j]) Dmax[j] = t;

}

}

/* Sort by scaled distances; index points to old order */

index[1] = 1;

for (i = 2; i <= npts; i++) {

for (m = i; m > 1 && Dmax[i] > Dmax[index[m-1]]; m--)

index[m] = index[m-1];

index[m] = i;

}

/* Direct algorithm; link points to determining distance */

i = index[1]; j = index[2]; link[1] = 2; link[2] = 1;

r[1] = ( s[i]/(1.+s[i]) ) * Dmax[i];

r[2] = ( s[j]/(1.+s[j]) ) * Dmax[j];

for (m=3; m <= npts; m++) {

i = index[m];

tmax = 0.;

for (n = 1; n < m; n++) {

j = index[n];

if ( (t = d[i][j] + r[n]) > tmax )

{ tmax = t; link[m] = n; }

}

r[m] = s[i] * tmax;

}

printf("radii in sorted order[orig order](sorted link):\n");
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for (i = 1; i <= npts; i++)

printf(" r%d[%d](->%d): %f\n",i,index[i],link[i],r[i] );

return(0);

}
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